Math24.ru
Формулы и Таблицы
Главная
Математический анализ
Пределы и непрерывность
Дифференцирование
Приложения производной
Интегрирование
Последовательности и ряды
Двойные интегралы
Тройные интегралы
Криволинейные интегралы
Поверхностные интегралы
Ряды Фурье
Дифференциальные уравнения
Уравнения 1-го порядка
Уравнения 2-го порядка
Уравнения N-го порядка
Системы уравнений
Формулы и таблицы
Powered by MathJax
   Пирамида
Сторона основания: \(a\)
Боковое ребро: \(b\)
Высота пирамиды: \(h\)
Апофема пирамиды: \(m\)
Число сторон многоугольника в основании: \(n\)
Объем пирамиды: \(V\)
Радиус вписанной окружности в основании: \(r\)
Полупериметр многоугольника в основании: \(p\)
Площадь боковой поверхности: \({S_{\text{бок}}}\)
Площадь основания: \({S_{\text{осн}}}\)
Площадь полной поверхности: \(S\)
  1. Пирамидой называется многогранник, в основании которого лежит многоугольник, а остальные грани являются треугольниками с общей вершиной.

    правильная пирамида

  2. Пирамида называется правильной, если в ее основании находится правильный многоугольник и вершина проецируется в центр основания.

  3. Пирамида, в основании которой лежит треугольник, называется тетраэдром.

  4. Перпендикуляр, опущенный из вершины пирамиды к плоскости основания, называется высотой пирамиды. В правильной пирамиде высота равна
    \(h = \large\frac{{\sqrt {4{b^2}{{\sin }^2}\frac{\pi }{n} - {a^2}} }}{{2\sin \frac{\pi }{n}}}\normalsize\),
    где \(b\) − боковое ребро, \(a\) − сторона основания, \(n\) − число сторон многоугольника в основании.

  5. Высота боковой грани называется апофемой. В правильной пирамиде длина апофемы выражается формулой
    \(m = \sqrt {{b^2} - \large\frac{{{a^2}}}{4}\normalsize} \)

  6. Площадь боковой поверхности правильной пирамиды  
    \({S_{\text{бок}}} = \large\frac{1}{2}\normalsize man = \large\frac{1}{4}\normalsize an\sqrt {4{b^2} - {a^2}} = pm\)

  7. Площадь основания правильной пирамиды
    \({S_{\text{осн}}} = pr\),
    где \(p\) − полупериметр многоугольника в основании, \(r\) − радиус вписанной окружности.

  8. Площадь полной поверхности  
    \(S = {S_{\text{осн}}} + {S_{\text{бок}}}\)

  9. Объем произвольной пирамиды  
    \(V = \large\frac{1}{3}\normalsize{S_{\text{осн}}}h\)

  10. Объем правильной пирамиды  
    \(V = \large\frac{1}{3}\normalsize prh\)



Все права защищены © www.math24.ru, 2009-2016   info@math24.ru
Сайт оптимизирован для Chrome, Firefox, Safari и Internet Explorer.