|
|
|
Множества чисел
|
|
Натуральные числа: \(\mathbb{N}\)
Натуральные числа c включенным нулем: \(\mathbb{N_0}\)
Целые числа: \(\mathbb{Z}\)
Целые положительные числа: \(\mathbb{Z^+}\)
Целые отрицательные числа: \(\mathbb{Z^-}\)
|
Рациональные числа: \(\mathbb{Q}\)
Действительные числа: \(\mathbb{R}\)
Комплексные числа: \(\mathbb{C}\)
|
-
Натуральные числа − числа, используемые при счете (перечислении) предметов:
\(\mathbb{N} = \left\{ {1,2,3, \ldots } \right\}\)
-
Натуральные числа с включенным нулем − числа, используемые для обозначения количества предметов:
\(\mathbb{N_0} = \left\{ {0,1,2,3, \ldots } \right\}\)
-
Целые числа − включают в себя натуральные числа, числа противоположные натуральным (т.е. с отрицательным знаком) и ноль.
Целые положительные числа:
\(\mathbb{Z^+} = \mathbb{N} = \left\{ {1,2,3, \ldots } \right\}\)
Целые отрицательные числа:
\(\mathbb{Z^-} = \left\{ { \ldots , - 3, - 2, - 1} \right\}\)
\(\mathbb{Z} = \mathbb{Z^-} \cup \left\{ 0 \right\} \cup \mathbb{Z^+} = \left\{ { \ldots , - 3, - 2, - 1,0,1,2,3, \ldots } \right\}\)
-
Рациональные числа − числа, представляемые в виде обыкновенной дроби \(a/b\), где \(a\) и \(b\) − целые числа и \(b \ne 0\).
\(\mathbb{Q} = \left\{ {x \mid x = a/b,\;a \in \mathbb{Z},\;b \in \mathbb{Z},\;b \ne 0} \right\}\)
При переводе в десятичную дробь рациональное число представляется конечной или бесконечной периодической дробью.
-
Иррациональные числа − числа, которые представляются в виде бесконечной непериодической десятичной дроби.
-
Действительные (вещественные) числа − объединение рациональных и иррациональных чисел: \(R\)
-
Комплексные числа
\(\mathbb{C} = \left\{ {x + iy \mid x \in \mathbb{R}\;и\;y \in \mathbb{R}} \right\}\),
где \(i\) − мнимая единица.
-
\(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}\)
|
|
|
|