Math24.ru
Формулы и Таблицы
Главная
Математический анализ
Пределы и непрерывность
Дифференцирование
Приложения производной
Интегрирование
Последовательности и ряды
Двойные интегралы
Тройные интегралы
Криволинейные интегралы
Поверхностные интегралы
Ряды Фурье
Дифференциальные уравнения
Уравнения 1-го порядка
Уравнения 2-го порядка
Уравнения N-го порядка
Системы уравнений
Формулы и таблицы
Powered by MathJax
   Интегралы от показательных и логарифмических функций
Функции: \({e^x}\), \({a^x}\), \(\ln x\), \(\sin x\), \(\cos x\)
Аргумент (независимая переменная): \(x\)
Натуральное число: \(n\)
Действительные числа: \(C\), \(a\), \(b\)
  1. Интеграл от экспоненциальной функции  
    \(\large\int\normalsize {{e^x}dx} = {e^x} + C\)

  2. Интеграл от показательной функции  
    \(\large\int\normalsize {{a^x}dx} = \large\frac{{{a^x}}}{{\ln a}}\normalsize + C,\;\;a > 0.\)

  3. \(\large\int\normalsize {{e^{ax}}dx} = \large\frac{{{e^{ax}}}}{{a}}\normalsize + C,\;\;a \ne 0.\) 

  4. \(\large\int\normalsize {x{e^{ax}}dx} = \large\frac{{{e^{ax}}}}{{{a^2}}}\normalsize\left( {ax - 1} \right) + C,\;\;a \ne 0.\) 

  5. Интеграл от натурального логарифма  
    \(\large\int\normalsize {\ln x\,dx} = x\ln x - x + C\)

  6. \(\large\int\normalsize {\large\frac{{dx}}{{x\ln x}}\normalsize} = \ln \left| {\ln x} \right| + C\) 

  7. \(\large\int\normalsize {{x^n}\ln x\,dx} = {x^{n + 1}}\left[ {\large\frac{{\ln x}}{{n + 1}}\normalsize - \large\frac{1}{{{{\left( {n + 1} \right)}^2}}}}\normalsize \right] + C\) 

  8. \(\large\int\normalsize {{e^{ax}}\sin {bx}\,dx} = \large\frac{{a\sin {bx} - b\cos {bx}}}{{{a^2} + {b^2}}}\normalsize {e^{ax}} + C\) 

  9. \(\large\int\normalsize {{e^{ax}}\cos {bx}\,dx} = \large\frac{{a\cos {bx} + b\sin {bx}}}{{{a^2} + {b^2}}}\normalsize {e^{ax}} + C\) 



Все права защищены © www.math24.ru, 2009-2016   info@math24.ru
Сайт оптимизирован для Chrome, Firefox, Safari и Internet Explorer.